Содержание
Тригонометрия - это раздел математики, который занимается изучением угловых измерений. В частности, тригонометрия включает в себя изучение величин углов, и как они влияют на другие измерения и величины, участвующие в уравнении под рукой. Учитывая два угла треугольника и зная, что мы делаем со значениями всех трех углов в целом - что в значительной степени является изучением геометрии - тригонометрия - это наука, используемая для определения измерения и других значений, связанных с этим третьим углом, как а также три стороны изучаемого треугольника. Тригонометрия имеет много реальных применений, и одним из менее известных, но наиболее важных из них является способ, которым исследование используется астронавтами.
Изучение расстояний
При расчете, например, расстояния от Земли до конкретной звезды, астронавты могут очень хорошо знать достаточно, чтобы применить тригонометрию для решения неизвестного количества. Например, если известно расстояние между двумя звездами или расстояние от одной звезды до Земли, но не расстояние до третьей, расположение можно рассматривать как треугольник, а тригонометрию можно использовать для расчета недостающего расстояния.
Исследование скорости
Астронавты могут также использовать треугольные вычисления - и, следовательно, тригонометрию - для расчета скорости, с которой они, или конкретное небесное тело, движутся. Например, если кажется, что тело движется с определенной скоростью по отношению к объекту, расстояние до которого известно, то расстояние, которое космонавт находится от этого тела, можно рассчитать. Процесс относительно прост и включает в себя просто вычисление неизвестного расстояния относительно скорости, с которой путешествуют астронавты. Это может помочь определить, как далеко объект находится по отношению к какой-либо конкретной скорости, и сколько времени потребуется, чтобы достичь его во время движения с этой скоростью.
Изучение орбит
Исследование конкретной звезды или орбиты планеты может быть значительно упрощено применением тригонометрии. Если кажется, что звезда движется с фиксированной скоростью относительно Земли или другого известного объекта, астронавты могут использовать окружающие объекты, расстояние и скорость которых, как известно, создают уравнения, необходимые в тригонометрии для вычисления неизвестного - здесь, орбиты (скорость и траектория) этого неизвестного тела. Если два объекта движутся с определенной скоростью и известно, что они находятся на определенном расстоянии друг от друга, этот третий объект может рассматриваться как X-фактор уравнения, и его расстояние и скорость, в терминах, по которым эти другие известны, могут быть вычислены с легкостью.
Механическое управление и машины
Основной аспект работы, проделанной космонавтами, включает использование механических изобретений и их манипулирование для выполнения задач, которые иначе были бы невозможны в космической среде. Например, роботизированные космические капсулы могут быть отправлены в места, куда люди не могут безопасно отправиться для проверки качества воздуха и земли, или для взятия образцов или фотографий для дальнейшего изучения. Управление этими роботизированными изобретениями - это вопрос математики, и в этом большую роль играет тригонометрия. Простой пример - это роботизированная рука. Если астронавт, управляющий роботизированной рукой, знает длину руки и высоту поддерживающей ее базы, то изучение тригонометрии может точно сказать ему, как маневрировать рукой - круговыми или треугольными движениями - чтобы достичь цель, которую он намерен достичь. Многие из этих вычислений, конечно, запрограммированы в механизме, но для того, чтобы эффективно управлять ими - и, в первую очередь, программировать их - тригонометрия должна быть понята и применена.